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1.BIOMEDICAL SIGNALS 
 Biomedical signal: a signal being obtained from a biologic system 

(human or animal)/originating from a physiologic process 

 almost every part of the body produces electrical signals 

 they contain useful diagnostic information, they are carriers of 
information, both useful and unwanted. 

 

 

 

 

 

 
 

The amplitudes of some common biomedical signals 

        BIOSIGNAL        FREQUENCY 

ECG 0,5Hz-100Hz 

EEG 0,5hZ-75Hz 

Arterial pressure wave DC-40Hz 

Body temperature DC-1Hz 

Respiration DC-10Hz 

Electromyograph 10Hz-5kHz 

Nerve action potentials 10Hz-10kHz 

 [1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University, PWS Publishing 

Company, 1997,  

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



1.SOURCES OF BIOMEDICAL 

SIGNALS 
1. Bioelectric signals: generated by nerves cells and muscle cells.  

 Nerve and muscle, action potentials, electric field propagation, ECG, 
EEG, EMG GSR 

2. Biochemical signals from living tissue or samples analyzed in a laboratory 

 pO2, pCO2, ion concentration, glucose levels 

3. Biomechanical signals (often invasive measurements are needed) 

 Motion, tension, displacement, blood pressure, flow 

4. Biomagnetic signals 

 Fields generated by brain, heart and lungs 

5. Bio-acoustic signals 

 Heart sounds 

 Respiratory sounds 

 Joint and contraction of muscles sounds 

6. Bio-optical signals 

 Fluoroscopic properties of amniotic fluid 

 Cardiac output measured by dye dilution technique  

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



1.BIOMEDICAL SIGNAL 

CLASSIFICATION 

• Signals can be classified as follows: 

Continuous 

– A continuum of space or time 

– Continuous variable functions 

Discrete 

– Discrete points in time or space 

– Represented as sequences of numbers 

• Biomedical signals are almost always continuous 

 

 

 

 

 

 

 

 
 

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



1.BIOMEDICAL SIGNAL 

CLASSIFICATION 
Biomedical signals can be: 

•       Deterministic 

– Defined by mathematical functions or rules 

Periodic signals are deterministic (sums 
of sinusoids) s(t)=s(t+nT) 

Transient signals can be deterministic: 
signal characteristics change with time 

• Random 

– Are described by statistical or distribution 

properties 

– Stationary signals remain the same over 

time 

Statistical 

Frequency spectra 

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 

Periodic Sinusoid 

Damped Sinusoidal/Transient 



1.BIOMEDICAL SIGNAL 

CLASSIFICATION 
• Real biomedical signals are not necessarily deterministic 

Unpredictable noise 

Non-stationary 

– Change in cardiac waveform over time 

 Identification of stationary segments of random signals is an 

important part of signal processing and pattern analysis 

• Physiological and time domain signals can often be decomposed 

into a summation of sinusoidal component waveforms.  Fourier 

analysis. 

• The frequency and phase spectra contribute to the time domain 

behavior or shape of the signal. 

• Modification of a signal in the frequency domain will affect the 

time domain behavior of the signal. 

 

 

 

 

 

 
 

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



1.BIOMEDICAL SIGNAL 

PROCESSING 
 Biomedical Signal Processing: the application of signal processing 

methods on biomedical signals 

 involves the analysis of signals to provide useful information upon 

which clinicians can make decisions 

 is an a ‘operation’ designed for extracting, enhancing, storing and 

transmitting useful information. 

 is especially useful in the critical care setting, where patient data 

must be analyzed in real-time. Real-time monitoring can lead to 

better management of chronic diseases, earlier detection of adverse 

events such as heart attacks and strokes and earlier diagnosis of 

disease.  

 

      

 

 

 

 

 

 

 [1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University, 1997,                        

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



1.BIOMEDICAL SIGNAL 

PROCESSING 
 

    The four stages of biomedical signal processing 

 

 

 

 

 

 

 

 [1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University, 1997,                         

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



2.SHORT HISTORY 
According to Alan V. Oppenheim and Ronald W. Schafer, the principles  

of signal processing can be found in the classical numerical analysis  

techniques of the 17th century. Oppenheim and Schafer further state  

that the "digitalization" or digital refinement of these techniques can be  

found in the digital control systems of the 1940s and 1950s 

 Newton used finite-difference methods which are special cases of some 

discrete-time systems 

 Gauss (1805)discovered the fundamental principle of the Fast Fourier 

Transform (FFT) even before the publication (1822) of Fourier's treatise on 

harmonic series representation of function (proposed in 1807) 

 Early 1950s signal processing was done with analog system, implemented 

with electronics circuits or mechanical devices. First uses of digital 

computers in digital signal processing was in oil prospecting. The digital 

signal processing could not be done in real time. 

 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989  



2.SHORT HISTORY 
 

 

 FFT discovered by Cooley and Tukey in 1965 

 The invention and proliferation of the microprocessor paved the way for low-
cost implementations of discrete-time signal processing systems 

 The mid-1980s, IC technology permitted the implementation of very fast 
fixed-point and floating-point microcomputer. 

 The architectures of these microprocessor are specially designed for 
implementing discrete-time signal processing algorithm, named as Digital 
Signal Processors(DSP). 

 

 

 

 

 

 

 
[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989  



3.BASICS OF DSP 

 

 

 

 

 

 
 

       [1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

       [3]  Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989,                

       [10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose,‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’,    

       [11] http://www.dspguide.com 

 

Signals and LTI-Systems: 

 

  Generation of an output signal  

     in response to an input signal 

     

  discrete and continuous systems 

 

 

Linear, Timeinvariant Systems: 

                                   System                                           System 

  additivity         x[n]          y[n]       kx[n]          ky[n]    

                                  System                                   System                                                        System 

  homogeneity  x1[n]        y1[n],x2[n]          y2[n]      x1[n]+x2[n]          y1[n]+y2[n] 

 

  shift invariance 



3.BASICS OF DSP 

 

 

 

 

 

 

 

        [3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989                 

        [11] http://www.dspguide.com/ 

Synthesis: in linear systems, signals  

   can be combined by scaling and    

   addition 

Decomposition: the inverse n   

   operation 



 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

Any signal can be 

decomposed into a group of 

additive components xi 

 

 Passing these components 

through a linear system 

produces signals, yi 
 

The synthesis of these output 

signals produces the same signal 

as when x [n] is passed through 

the system 

3.BASICS OF DSP-Superposition 

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997,      

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989  

[11] ]  http://www.dspguide.com/ 



 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

combined two signals into a third one 

 

applies a linear system to a signal via 

   it‘s impulse response, which fully describes  

   the system behaviour 

 

 

 

 

 

 

 

 

 

 

 

 

  

 y[i ] = x[i ] * h[i ]           y[i ] =        h[j ]x[i-j ] 
 

M .. length of  

       impulse response 

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989                            

[11] ]  http://www.dspguide.com 

3.BASICS OF DSP-Convolution 
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Application of a LTI: 

    

  multiplication of the 

     input samples with  

     the flipped impulse  

     response 

 

  addition of the values 

     gives result for the 

     corresponding  

     output sample 
 

3.BASICS OF DSP-Convolution 

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]  http://www.dspguide.com 



 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

many samples of the input signals contribute to one output sample 

 

the samples of the impulse response act as weighing coefficients 

 

feeding a delta function into a linear system gives the impulse    

   response:    

3.BASICS OF DSP-Convolution 

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]   http://www.dspguide.com 



 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

3.BASICS OF DSP-Relationships between impulse-, 

step- and frequency response: 

Note: Convolution in time domain = multiplication in frequency domain ! 

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]   http://www.dspguide.com 



 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

3.BASICS OF DSP-Convolution 

and FIR Filters 
  

The shape of the impulse response determines phase- and frequency 

response of an LTI system. The impulse response is also called „filter kernel“. 
 

 Finite Impulse Response Filters can be implemented by  a   

single convolution of an input signal with the filter kernel 

  

    Several positive vaules in the impulse response give an 

       averaging (low-pass) filter  

 

    Substracting a low-pass filter kernel from the delta function gives                   

       a high pass filter kernel 

 

  A symmetrical impulse response gives a linear phase response 
     

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]   http://www.dspguide.com 



 

 Example High and Lowpass Filter-Kernels: 

3.BASICS OF DSP-Convolution 

and FIR Filters 

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989       

[11]  http://www.dspguide.com 



 

 

Digital Filters can be described by the generalized discrete differential  

   equation: 

 

         αm · y[n-m]  =      bk · x[n-k] 

 

 

 

 

a, b : filter coefficients 

x[n] : input signal 

y[n] : output signal 

M,N :filter order 

the right side depends only on the inputs x[n] :         feed-forward 

the left side depends on the previous outputs y[n] :  feed-back 

 

FIR Filters have only feed-forward components and they can be 

calculated non-recursively, by convolution 

 

IIR Filters have feed-back components also and they are calculated 

recursivelsy (infinite impulse response) 

3.BASICS OF DSP-Z-Transform 

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]   http://www.dspguide.com 
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 discrete version of the Laplace-transform 

 using the Z-transform, the characteristics of a digital filter 

    can be described by the following transfer function: 

 

       αm · y[n-m] =      bk · x[n-k] |       Y(z) ·       αm · z-m   = X(z) ·       bk · z-k 

 

 

 

 

 

  H(z) =             =            

 

 

 

 

 

 

 

 

 zx  in Z-domain represents a delay element of x discrete delays, 

 the numerator describes the feedfoward part of the filter, 0 = „zeros“   

 the denumerator describes the feedback part of the filter, 0 = „poles“ 

3.BASICS OF DSP-Z-Transform 

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]  http://www.dspguide.com 
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y [n] =       bk · x[n-k]   

finite impulse response,  

   no recursion 

 

 described by multiplication 

   coefficients 

 

 less sufficient (need higher order) 
 

4. Digital Filters – FIR filters  

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]  http://www.dspguide.com 
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y[n]  =        bk · x[n-k]+        -αm · y[n-m]   

 

 

 infinite impulse response,  

   truncated at a certain precision 

 

 use previously calculated values  

   from the output (recursion) 

 

described by recursion coefficients 

 

 more efficient, but can be unstable 

4. Digital Filters – IIR filters  

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]   http://www.dspguide.com 
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4.Digital Filters –Typical IIR filters 

Chebyshev, Butterworth and Bessel characteristics  

 

 

 

 

 [1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]  http://www.dspguide.com 



Performance 

in Time Domain  

4. Digital Filter Characteristics   

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]   http://www.dspguide.com 



4. Digital Filter Characteristics   

[1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11] http://www.dspguide.com 

  Performance 

  in Frequency Domain 



4. Digital Filter Characteristics-Examples   

 [1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, Northeastern University,  1997, 

[11]  http://www.dspguide.com 

Examples of three biological signals with their 

frequency spectrum-ECG,SPIROGRAM,EEG 



 

 

 

 

                             =                                      =  

  

System Function:       H(z) =                =    

 

 

 

 

 

 

          
Filter Coefficients:  b3=1      b2=-2 ·cos(ω0)     b1=1 

                       

scaling: 

 

 

 
[2] Steven T.Karris, ‘‘ Signals and Systems with MATLAB Computing and Simulink Modeling’’, Fourth Edition 2008 

[11]   http://www.dspguide.com 

4. Digital FIR Filters-                                 

60 Hz notch filter example 
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Deriving  

Filter 

Characteristics 

4. Digital FIR Filters-                                 

60 Hz notch filter example 

[2] Steven T.Karris, ‘‘ Signals and Systems with MATLAB Computing and Simulink Modeling’’, Fourth Edition, 2008 

[11]  http://www.dspguide.com 



Frequencies that define complex zeros:             

 

f0=60Hz - power supply frequency 

fs=500Hz - sampling rate 

we get w0 = 0.754 

 

Positions of complex zeros: 

  [11] ]  http://www.dspguide.com 

4. Design Digital FIR Filters  -    

60 Hz notch filter example    

 

[12] Matlab-source:  http://www.scienceprog.com/category/biomedical-dsp 
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2 0 0cos( ) sin( )z j   



 

 

60Hz notch applied to ECG signal 

[11]   http://www.dspguide.com 

[12] Matlab-source:  http://www.scienceprog.com/category/biomedical-dsp 

4. Design Digital FIR Filters  -  60 Hz 

notch filter - Implementation in Matlab 
    



 

Highpass for ECG signal  

parsed from a text file 

4. Design Digital FIR Filters  -  60 Hz 

notch filter - Implementation in Matlab 
    

[11] ]  http://www.dspguide.com  

[12] Matlab-source:  http://www.scienceprog.com/category/biomedical-dsp 



 

 

mathematical operation that is very  

   similar to convolution 

 

uses two signals to produce a third  

   signal. This third signal is called the  

   cross-correlation of the two input  

   signals (i.e.finds similar signals in a  

   signal) 

 

if a signal is correlated with itself, the  

   resulting signal is instead called the   

   auto-correlation (i.e.finds periodic  

   parts of a signal) 

   

Correlation is the optimal technique for  

   detecting a known waveform in random noise. 

5. Other Signal Processing Techniques 

Correlation 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]  http://www.dspguide.com 



5. Other Signal Processing Techniques 

Discrete Fourier Transform (DFT) 

 Decomposition into  

      sine- and cosine waves 

    

    k .. base function 

    i  .. sample index  

   N .. number of samples 

    

Finds frequency components 

   of (periodic) signals 

 Frequencies up to F/2 

 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]  http://www.dspguide.com 

 cos(2 / )kc ki N

sin(2 / )ks ki N



 

 

Inverse Transform: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FFT-Algorithms 

 

      
 

    

5. Other Signal Processing Techniques 

Discrete Fourier Transform(DFT) 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]   http://www.dspguide.com 
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 Calculation of Magnitude and Phase response: 

5. Other Signal Processing Techniques 

Discrete Fourier Transform(DFT) 

 [2] Steven T.Karris, ‘‘ Signals and Systems with MATLAB Computing and Simulink Modeling’’, Fourth Edition 2008 

[11]  http://www.dspguide.com 



 

6. Short Time Fourier Analysis 

 

[3] Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989 

[11]  http://www.dspguide.com  

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 

 

 In order to analyze small section of a signal, 

Denis Gabor (1946), developed a technique, 

based on the FT and using windowing : STFT 

 A compromise between time-based and 

frequency-based views of a signal. 

 both time and frequency are represented in 

limited precision. 

 The precision is determined by the size of the 

window. 

 Once you choose a particular size for the time 

window - it will be the same for all frequencies. 

 Many signals require a more flexible approach 

- so we can vary the window size to determine 

more accurately either time or frequency. 



 Fourier Analysis is based on an indefinitely long cosine wave of a specific  

      Frequency 

 

 

 

 

                                                             time, t 

 Wavelet Analysis is based on an short duration wavelet of a specific center  

      frequency 

 

 

                            

 

                                                                   time, t 

 

6. Fourier Analysis-Wavelet Analysis  

 [2] Steven T.Karris, ‘‘ Signals and Systems with MATLAB Computing and Simulink Modeling’’, Fourth Edition, 2008 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 



 

 A wavelet is a waveform of effectively limited duration that has an 

average value of zero. 

 

6. What is Wavelet Analysis ? 

 

 [2] Steven T.Karris, ‘‘ Signals and Systems with MATLAB Computing and Simulink Modeling’’, Fourth Edition, 2008 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 



6. Wavelet's  properties  
 

 

 Short time localized waves with zero integral value. 

 

 Possibility of time shifting. 

 

 Flexibility. 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 



A mathematical representation of the Fourier transform: 

 

 

 

 

 

 

 

the sum over all time of the signal f(t) multiplied by a complex 

exponential, and the result is the Fourier coefficients F(w) . 

 

6.The Continuous Wavelet Transform 

(CWT) 

  

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 

 ( ) iwt

wF f t e dt 
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6. Wavelet Transformation 

 

 

     Those coefficients, when multiplied by a sinusoid of appropriate 

frequency, yield the constituent sinusoidal component of the original 

signal: 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 



6. Wavelet Transformation 
 

 And the result of the CWT are Wavelet coefficients  

 Multiplying each coefficient by the appropriately scaled and shifted 

wavelet yields the constituent wavelet of the original signal: 

 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 



6. Wavelet Transformation-

Equations 
 

 

 Wavelet Transform           

 

 

 

 Inverse Wavelet Transform  

 

 

 

 

 All wavelet derived from mother wavelet  

 

 
[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 

 
,( , ) ( ) ( )S Ts f t t dt    

 
,( ) ( , ) ( )S Tf t s t d ds    

 
,

1
( ) ( )S T

t
t

ss


 






 

6. Wavelet Transformation-

Scaling 

  
 Wavelet analysis produces a time-scale view of the signal. 

 Scaling means stretching or compressing of the signal. 

 scale factor (a) for sine waves: 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 
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 Scale factor works exactly the same with wavelets: 

 

6. Wavelet Transformation-

Scaling 

  

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 
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6. Wavelet Transformation-

Wavelet  function 
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[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 

                                                                                     

b- shift  

   coefficient                                                                             

a- scale   

   coefficient 

 
 

              

                                                                        

2D function 



 

 
normalization 

shift in time 

wavelet with 

scale, s and time,  
Mother wavelet 

change in scale: 

big s means long 

wavelength 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 

 

6. Wavelet Transformation-

Wavelet  function 
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6. Wavelet Transformation 
 

 
time-series 

I’m going to 

ignore the 

complex 

conjugate 

from now 

on, assuming 

that we’re 

using real 

wavelets 

complex conjugate of 

wavelet with 

scale, s and time,  

coefficient of wavelet 

with 

scale, s and time,  

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 
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 For easier calculation we can to discrete  continuous  signal. 

 We have a grid of discrete values that called dyadic grid .  

 Important that wavelet functions compact (e.g. no over-calculatings)  

 

6. Wavelet Transformation-Wavelets  

examples 

Dyadic  transform 

  

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 
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6. Wavelet Transformation- 

Wavelet  functions examples 
 

 

 

 

 Haar  function 

 

 

 

 

 Daubechies function 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 



6.Inverse Wavelet Transform 
 

 

 

 

 

 

 

 

 

 

build up a time-series as sum of wavelets of different scales, s, and 

positions, t  

time-series 
coefficients 

of wavelets 

wavelet with 

scale, s and time,  

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 
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 good frequency resolution at low frequencies and  

 good time resolution at high frequencies 

 no work-around for the principle of entropy 

 

 

 

 scale (s) and translation (t) of the base wavelet  

 convolution with the signal  

 special wavelets for special purposes 

6. Wavelet Transformation 

[11]  http://www.dspguide.com 

  [17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 



7.Data mining 
 The use of tools to extract useful information & patterns in bodies of 

data for use in decision support and estimation 

 The automated extraction of hidden predictive information from 

(large) databases 

 
Diagnosis: 

 Recognize and classify patterns in multivariate  

 patient attributes 

Therapy: 

Select from available treatment methods; based on 

effectiveness, suitability to patient, etc.  

Prognosis: 

Predict future outcomes based on previous 

experience and present conditions 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 
[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 



7.DATA MINING- Methods 

 FUNCTIONS-METHODS: 

 
•   Clustering into ‘natural’ groups (unsupervised) 

• Classification into known classes; e.g. diagnosis  (supervised) 

• Detection of associations  

• Detection of sequential temporal patterns;  e.g. disease 

development 

• Prediction or estimation of an outcome 

• Time series forecasting  

 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 
[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 
 



7.DATA MINING-Supervised vs. 

Unsupervised Learning  
 

 Supervised learning (classification) 

• Supervision: The training data (observations, measurements, 

etc.) are accompanied by labels indicating the class of the 

observations 

• New data is classified based on the training set 

 Unsupervised learning (clustering) 

• The class labels of training data is unknown 

• Given a set of measurements, observations, etc. the aim is to 

establish the existence of classes or clusters in the data 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 

[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 



7.DATA MINING-Classification  
 

 

Simple classification could be based on: 

 

  Thresholds (levels / intervals, adaptive thresholds) 

 

  absolute values + averaging over intervals 

 

  integration / difference 

 

  local minima / maxima, zeros in time domain 

 

  Energy, energy distribution over frequency bands 

 

 

  

 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 

[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 



7.DATA MINING- Bayesian 

Classification  
Bayesian Theorem 

 

 Given training data D, posteriori probability of a hypothesis h, P(h|D) 
follows the Bayes theorem 

 

 

 MAP (maximum posteriori) hypothesis 

 

 

 Practical difficulties:  

• require initial knowledge of many probabilities 

• significant computational cost 

 

 

)(
)()|(
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h
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

   [15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 

[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 



7.DATA MINING- Bayesian 

Classification  
 

 The classification problem may be formalized using a-posteriori 
probabilities: 

   P(C|X)  = prob. that the sample tuple    
 X=<x1,…,xk> is of class C. 

 

 e.g. P(class=N | outlook=sunny,windy=true,…) 

 

 

 

 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 

  [16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 



 

 

7.DATA MINING-NEURAL NETWORKS 

 
 

 

 Advantages 

– prediction accuracy is generally high 

– robust, works when training examples contain errors 

– output may be discrete, real-valued, or a vector of several discrete 
or real-valued attributes 

– fast evaluation of the learned target function 

 Disadvantages 

– long training time 

– require (typically empirically determined) parameters (e.g. network 
topology)  

– difficult to understand the learned function (weights) 

– not easy to incorporate domain knowledge 

        [11]  http://www.dspguide.com/ 

 

 

  

  

 
 

A set of connected input/output units where each connection has 

a weight associated with it 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 



 

 

7.DATA MINING-NEURAL NETWORKS 

 
 

 

         [11]  http://www.dspguide.com/ 

 

 

  

  

 
 A  Neuron 

mk - 

f 

weighted  

sum 

Input 

vector x 

output y 

Activation 

function 

weight 

vector w 

 

w0 

w1 

wn 

x0 

x1 

xn 

The n-dimensional input vector x is mapped into  
variable y by means of the scalar product and a 
nonlinear function mapping 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 



 

 

7.DATA MINING-NEURAL NETWORKS 

 
 

 

        [11]  http://www.dspguide.com/ 

 

 

  

  

 
 

Multi-Layer Perceptron 

Output vector 

Output nodes 

Hidden nodes 

Input nodes 

Input vector: xi 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 
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7.DATA MINING-NEURAL NETWORKS 

 
 

 

  [11]  http://www.dspguide.com/ 

 

 

  

  

Neural Networks: 

 

 mimic biological signal processing 

 

 Input-, hidden and output-layers 

   units with activation functions 

 

learning algorithms e.g. 

   error back propagation 

   unsupervised learning / clustering 

 

internal representation unrevealed 

 

pattern recognition, prediction 
 

[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 



 

 

7.DATA MINING-SVMs-Support Vector 

Machines 

  A new classification method for both linear and nonlinear data 

 It uses a nonlinear mapping to transform the original training data into 

a higher dimension 

 With the new dimension, it searches for the linear optimal separating 

hyperplane (i.e., “decision boundary”) 

 With an appropriate nonlinear mapping to a sufficiently high 

dimension, data from two classes can always be separated by a 

hyperplane 

 SVM finds this hyperplane using support vectors (“essential” training 

tuples) and margins (defined by the support vectors) 

        [11]  http://www.dspguide.com/ 

 

 

  

  

[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 



7.DATA MINING - SVMs 

 
 

 

Suport Vector Machines (SVMs): 

 

 binary classificatin of an input 

vector 

 

training with classified data seperates 

   the feature space in two areas, with  

   maximal distance of positive /    

   negative  

   classifications 

  

 SVMs find a global minimum 

   (in contrast to e.g. neural networks) 

  [15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 

[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 



 

 

7.DATA MINING-SVMs-Kernel functions 

 

 
 Instead of computing the dot product on the transformed data tuples, it 

is mathematically equivalent to instead applying a kernel function K(Xi, 

Xj) to the original data, i.e., K(Xi, Xj) = Φ(Xi) Φ(Xj)  

 Typical Kernel Functions 

           Polynomial kernel of degree h:  

      

Gaussian radial basis function kernel:  

 

                                   Sigmoid kernel: 

 

 SVM can also be used for classifying multiple (> 2) classes and for 

regression analysis (with additional user parameters) 

 
        [11]  http://www.dspguide.com/ 

 

 

  

  

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 
[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  Morgan Kaufmann, 2005. 
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7.DATA MINING-SVMs vs. Neural 

Network  

 

 

        [11]  http://www.dspguide.com/ 

 

 

  

  

• SVM  
– Relatively new concept 

– Deterministic algorithm 

– Nice Generalization 

properties 

– Hard to learn – learned 

in batch mode using 

quadratic programming 

techniques 

– Using kernels can learn 

very complex functions 

• Neural Network 
– Relatively old 

– Nondeterministic algorithm 

– Generalizes well but 
doesn’t have strong 
mathematical foundation 

– Can easily be learned in 
incremental fashion 

– To learn complex 
functions—use multilayer 
perceptron (not that trivial) 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 



8.Basic Signal Statistics  

 
 

 Sensitivity 

 Specificity 

 Positive Predictive Value 

 Negative Predictive Value 

 Likelihood Ratio 

 Relative Risk 

 Absolute Risk 

 Number needed to treat/harm 

  [4 ] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 



8.Basic Signal Statistics-

Sensitivity and Specificity 
 

 Four possible situations: 

True 

Positive 

False 

Positive 

False 

Negative 

True 

Negative 

Present Absent 

Condition is: 

This is Total # of 

“positive” tests 

T
e
s
t 

R
e
s
u
lt
: 

A
b
s
e
n
t 

P
re

s
e
n
t 

This is Total # of 

“negative” tests 

  [4 ] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 



8.Basic Signal Statistics-

Sensitivity and Specificity 
 

 Sensitivity is the proportion of condition present cases on which the 

test returned “positive”  

 Analogous to the hit rate (H) in Signal Detection Theory 

 

 

 

 Specificity is the proportion of condition absent cases on which the 

test returned “negative” 

 Analogous to the Correct Rejection rate in Signal Detection Theory 

 

 
Sensitivity and Specificity have a similar relationship: as a cut-off value for a test becomes more 

stringent the sensitivity goes down and the specificity goes up…and vice versa 

 

 

 

Sensivity 
# True Positives

# True Postives +  #False Negatives

 

Specificity 
# True Negative

# True Negative +  #False Positive

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 

  [4 ] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 



8.Basic Signal Statistics 
 

 Likelihood Ratio is the ratio of True Positive rate to False Positive rate 

 

 

 

 If a test is positive, how likely is it that the condition is present? 

     Positive Predictive Value is the proportion of “positive” test results that 

are correct 

 

 

 Negative Predictive Value is the proportion of “negative” test results 

that are correct 

 

 

Likelihood Ratio 
Sensitivity

1 -  Specificity

 

PPV 
# True Positives

# True Postives +  #False Positives

 

NPV 
# True Negatives

# True Negatives +  #False Negatives

  [4 ] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 



8.Basic Signal Statistics 
 

 Relative Risk is the ratio of Exposure Events to Non-Exposure Events 

 

 

 

 

 

 

 

 Relative Risk Reduction is the difference between event rates in the 

exposure and non-exposure groups, expressed as a fraction of the non-

exposure event rate(it can be positive or negative) 

 

 

 

 

 

 

 

 

 

Exposure Event Rate
A

A +  B

 

Control Event Rate
C

C +  D

 

Relative Risk 
Exposure Event Rate

Control Event Rate

A /(A  B)

C /(C  D)

 

Relative Risk Reduction
Exposure Event Rate -  Control Event Rate

Control Event Rate

  [4 ] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 



8.Basic Signal Statistics 
 The absolute risk reduction conveys effect size 

 

 

 

 

 An intuitive version is to consider the reciprocal - the “number 

needed to treat or harm” 

 

 

 

 Indicates the number of individuals that would have to be exposed to 

the treatment in order to cause one to have the outcome of interest 

 

 

Absolute Risk Reduction  Exposure Rate -  Control Rate

 

Number Needed to Treat or Harm =  
1

Absolute Risk Reduction

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 

  [4 ] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 



 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

Mean: 
 

 

 

Standard deviation: 

 

8.Basic Signal Statistics  

  [4 ] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 
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Histogram, Probability mass function, Probability density 

function 

8.Basic Signal Statistics  

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 

  [4 ] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 



9.Problems in biomedical signal 

processing 

 

 
 Accessibility of the variables to measurement 

 Patient safety, preference for noninvasiveness 

 Indirect measurements (variables of interest are not accessible) 

 Variability of the signal source 

 Interactions among physiological system 

 Acquisition interference 

  

 

   [10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989  



9.Problems in biomedical signal 

processing-Artefacts and interference 

 Interference from other physiological systems (e.g. muscle artifacts 

in EEG recordings) 

 Low-level signals (e.g. microvolts in EEG) require very sensitive 

amplifiers; they are easily sensitive to interference. 

 Limited possibilities for shielding or other protection - Nonlinearity 

and obscurity of the system under study 

  basically all biological systems exhibit nonlinearities while most of 

the methods are based on the assumption of linearity 

  exact structures and true function of many physiological systems 

are often not known 

 

 

[3]   Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, Prentice-Hall, Inc.1999,1989  

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



9.Problems in biomedical signal 

processing-Artefacts and interference 

Some EEG artefacts 

 

 

 

 
Pulse wave artefact: movement of electrode arising from patient pulse under  

the electrode. 

ECG signal artefact: ECG signal also picked up by the EEG electrodes. 

Both easily recognized because they are periodic. 

 

 
[19] http://www.brown.edu/Departments/Clinical_Neurosciences/louis/artefct.html 



10.APPLICATION-ECG 
 The electrocardiogram (ECG) is a time-varying signal reflecting the ionic current 

flow which causes the cardiac fibers to contract and subsequently relax. The 
surface ECG is obtained by recording the potential difference between two 
electrodes placed on the surface of the skin. A single normal cycle of the ECG 
represents the successive atrial depolarisation/repolarisation and ventricular 
depolarisation/repolarisation which occurs with every heart beat.  

 Simply put, the ECG (EKG) is a device that measures and records the electrical 
activity of the heart from electrodes placed on the skin in specific locations 

 A typical ECG period consists of P,Q,R,S,T and U waves 

 

 

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



 

 
 

 

 

10.APPLICATION-ECG 

[10] B H Brown, R H Smallwood,‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’, University of Sheffield,1999 
[13] Chaudhuri S.,Pawar T.D.,Duttagupta S., ‘‘ Ambulation Analysis in Wearable ECG ’’, Springer,2009 
 [14] Gari D.Clifford,Francisco Azuaje,Patrick E.McSharry, ‘‘ Advanced Methods and Tools for ECG Data Analysis ’’,Artech House 
Publishers 

 

The normal electrocardiogram with component waves labelled. 

Reed M et al. QJM 2005;98:87-95 

P wave: the sequential 
activation 
(depolarization) of the 
right and left atria 
QRS complexes: right 
and left ventricular 
depolarization 
T wave: ventricular 
repolarization 
U wave: origin not clear, 
probably 
”afterdepolarizations” in 
the ventrices  
 
 
 
 
 
 
 
 
 
 
 
 
 



 Three common noise sources  

– Baseline wander 

– Power line interference 

– Muscle noise 

 When filtering any biomedical signal care should be taken not to 
alter the desired information in any way 

 A major concern is how the QRS complex influences the output of 
the filter; to the filter they often pose a large unwanted impulse 

 Possible distortion caused by the filter should be carefully quantified 

 

10.APPLICATION-ECG Filtering 

[10] B H Brown, R H Smallwood,‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’, University of Sheffield,1999 
[13] Chaudhuri S.,Pawar T.D.,Duttagupta S., ‘‘ Ambulation Analysis in Wearable ECG ’’, Springer,2009 
 [14] Gari D.Clifford,Francisco Azuaje,Patrick E.McSharry, ‘‘ Advanced Methods and Tools for ECG Data Analysis ’’,Artech House 
Publishers 

 



10.APPLICATION-ECG Filtering 
 

 Both baseline wander and powerline interference removal are 
mainly a question of filtering out a narrow band of lower-than-ECG 
frequency interference.  

– The main problems are the resulting artifacts and how to 
optimally remove the noise 

 Muscle noise, on the other hand, is more difficult as it overlaps with 
actual ECG data 

 For the varying noise types (baseline wander and muscle noise) an 
adaptive approach seems quite appropriate, if the detection can be 
done well. For power line interference, the nonlinear approach 
seems valid as ringing artifacts are almost unavoidable otherwise 

 

[10] B H Brown, R H Smallwood,‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’, University of Sheffield,1999 
[13] Chaudhuri S.,Pawar T.D.,Duttagupta S., ‘‘ Ambulation Analysis in Wearable ECG ’’, Springer,2009 
 [14] Gari D.Clifford,Francisco Azuaje,Patrick E.McSharry, ‘‘ Advanced Methods and Tools for ECG Data Analysis ’’,Artech House 
Publishers 

 



10.APPLICATION-QRS 

detection  
 QRS detection is important in all kinds of ECG signal processing 

 QRS detector must be able to detect a large number of different QRS 

morphologies 

 QRS detector must not lock onto certain types of rhythms but treat next 

possible detection as if it could occur almost anywhere 

 Typical structure of QRS detector algorithm: preprocessing (linear filter, 

nonlinear transformation) and decision rule 

 For different purposes (e.g. stress testing or intensive care monitoring), 

different kinds of filtering, transformations and thresholding are needed 

 Multi-lead QRS detectors 

 
[10] B H Brown, R H Smallwood,‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’, University of Sheffield,1999 
[13] Chaudhuri S.,Pawar T.D.,Duttagupta S., ‘‘ Ambulation Analysis in Wearable ECG ’’, Springer,2009 
 [14] Gari D.Clifford,Francisco Azuaje,Patrick E.McSharry, ‘‘ Advanced Methods and Tools for ECG Data Analysis ’’,Artech House 
Publishers 

 



10.APPLICATION-QRS 

detection  
 Bandpass characteristics to preserve essential spectral content (e.g. 

enhance QRS, suppress P and T wave), typical center frequency 10 

- 25 Hz and bandwidth 5 - 10 Hz 

 Enhance QRS complex from background noise, transform each 

QRS complex into single positive peak 

 Test whether a QRS complex is present or not (e.g. a simple 

amplitude threshold) 

[10] B H Brown, R H Smallwood,‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’, University of Sheffield,1999 
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10.APPLICATION-Estimation 

Problem 
 Maximum likelihood (ML) estimation technique to derive detector 

structure 

 Starting point: same signal model as for derivation of Woody method 

for alignment of evoked responses with varying latencies 

                                                       

                                                              0 ≤ n ≤ θ-1 

                                                                            θ ≤ n ≤ θ+D-1 

                                                                            θ +D ≤ n ≤ N-1 

  

 

       x (n) observed signal                                          θ    QRS occurrence time                     

       s (n) QRS, known morphology                           D    duration of s (n) 

       υ(n) noise                                                           N    observation interval 
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10.APPLICATION-QRS 

detection  
Unknown time of occurrence  

[10] B H Brown, R H Smallwood,‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’, University of Sheffield,1999 
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ML estimate of occurrence time θ 

(value that maximizes log likelihood function:) 

                           ^ 
                                                   θ 

PDF of observed signal 

arg max ln ( ; )p x 

arg max ( )y 

equivalent to finding peak amplitude in signal y(θ)                                                                                                     

               ^                              
                                          

                                          θ               

                                                   filtering operation 

                



10.APPLICATION-QRS 

detection  
 

y (θ) is output of matched filter h(n) 

 

 

 

 

False detection, because assumed one QRS complex present in N 

          thresholding 

                                 _        ^ 

 

 

      detected QRS complexes at θ1,θ2,… 
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10.APPLICATION-QRS 

detection  
Unknown time of occurrence and amplitude a 

 

observed signal 

maximize log-likelihood function 
                                     ^     ^ 

                                                 θ 

ML estimator of θ 

    

^                                                         _ 

                      θ 

 

                                _          ^ 
thresholding 
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10.APPLICATION-QRS 

detection  
Unknown time of occurrence, amplitude and width 

width parameter l in model of QRS waveform  

 

ML estimator of θ 

           ^                                       _ 

                          θ                        l 

 

Energy of s(n) a function of l, can not be omitted from estimation          

of θ 
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10.APPLICATION-QRS 

detection  
Easier approach to model width: s(n) composed of two identical  

waveforms, q(n), of which one is shifted l samples in time and with  

opposite sign 

 

 

^                                                                 -              - 

                   θ                               l 
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10.APPLICATION-QRS 

detection  
 

Peak-and-valley picking strategy: 

 Use of local extreme values as basis for QRS detection 

 Base of several QRS detectors 

 Distance between two extreme values must be within certain limits 

to qualify as a cardiac waveform 

 Also used in data compression of ECG signals 
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10.APPLICATION-Linear Filtering 
 To enhance QRS from background noise 

 Examples of linear, time-invariant filters for QRS detection: 

– Filter that emphasizes segments of signal containing rapid transients (i.e. QRS 

complexes) 

• Only suitable for resting ECG and good SNR 

– Filter that emphasizes rapid transients + low pass filter 

– Family of filters, which allow large variability in signal and noise properties 

 

 

 

• Suitable for long-term ECG recordings (because no multipliers) 

• Filter matched to a certain waveform not possible in practice 

  Optimize linear filter parameters (e.g. L1 and L2) 
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10.APPLICATION-Decision 

Rule 
 To determine whether or not a QRS complex has occurred 

 Fixed threshold  

 Adaptive threshold 

– QRS amplitude and morphology may change drastically during a 

course of just a few seconds 

 Here only amplitude-related decision rules 

 Noise measurements 

 Interval-dependent QRS detection threshold 

– Threshold updated once for every new detection and is then held fixed 

during following interval until threshold is exceeded and a new detection 

is found 

 Time-dependent QRS detection threshold 
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10.APPLICATION-Performance 

Evaluation 
 

 Before a QRS detector can be implemented in a clinical setup 

– Determine suitable parameter values 

– Evaluate the performance for the set of chosen parameters 

 Performance evaluation 

– Calculated theoretically or 

– Estimated from database of ECG recordings containing large 

variety of QRS morphologies and noise types 

 

[20] Veena Hegde, “Review of Data Analysis Methods for Denoising and Characterising ECG’’, November 2009 
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10.APPLICATION-Performance 

Evaluation 
 Estimate performance from ECG recordings database 

 

                                                                            ^ 

PD: probability of true detection 

PF: probability of false detection 

PM: probability of missed detection 

ND: number of correctly detected complexes      ^ 

NF: number of false alarms 

NM: number of missed beats 

θj:estimated occurrence time 

θi:annotation time                                              A beat detected when 

Δθ:matching window                                           ^                                     
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10.APPLICATION-Performance 

Evaluation 
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10.APPLICATIONS-ECG-

Performance Evaluation 
 

 

Receiver operating 

characteristics (ROC) 

– Study behaviour of 

detector for different 

parameter values 

– Choose parameter with 

acceptable trade-off 

between PD and PF 

[20] Veena Hegde, “Review of Data Analysis Methods for Denoising and Characterising ECG’’, November 2009 
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1. Would you consider a nerve action potential as a continuous or discontinuous signal? 

2. Is the ECG a periodic signal? 

3. What is the result of carrying out a Fourier transform on a rectangular impulse in 

time? 

4. Is the variance of a data set equal to the square root of the standard deviation? 

5. Is an EMG signal periodic? 

6. What is the convolution integral? 

7. What do you get if you multiply the Fourier transform of a signal by the frequency 

response of a system? 

8. Measurements are made on a group of subjects during a period of sleep. It  is found 

that the probability of measuring a heart rate of less than 50 bpm is 0.03.In the same 

subjects a pulse oximeter is used to measure oxygen saturation PO2 and it is found 

that the probability of measuring a value of PO2  below 83% is 0.04. If the two 

measurements are statistically independent then what should be the probability of 

finding both a low heart rate and low oxygen saturation at the same time?                  

If you actually find the probability of both the low heart rate and low oxygen saturation 

occurring at the same time to be 0.025 then what conclusion would you draw? 

11.PROBLEMS-Short questions 

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



1. A nerve action potential should probably be considered as discontinuous as it moves 

very rapidly between the two states of polarization and depolarization. 

2. The ECG is periodic, although the R-R interval is not strictly constant. 

3. You obtain a frequency spectrum of the form sin(t)/t if you carry out a Fourier transform 

on a rectangular impulse.  

4. No, the variance is equal to the square of the standard deviation. 

5. An EMG signal is not periodic. It is the summation of many muscle action potentials 

which are asynchronous. 

6. The convolution integral gives the output of a system in terms of the input and the 

characteristic response of the system to a unit impulse. 

7. If you multiply the FT of a signal by the frequency response of a system  then you get 

the FT of the output from the system. 

8. The combined probability if the two measurements are independent would be 0.0012. If 

the probability found was 0.025 then the conclusion would be that heart rate and oxygen 

saturation measurements are not statistically independent. This would not be a 

surprising finding as the two measurements have a physiological link. 

11.PROBLEMS-Answers 

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING’’ 



12.BIBLIOGRAPHY 
 BOOKS: 

 

 [1] Vinay K.Ingle,John G.Proakis, ‘‘ DIGITAL SIGNAL PROCESSING Using MATLAB V.4’’, 
Northeastern University, PWS Publishing Company, 1997 

 [2] Steven T.Karris, ‘‘ Signals and Systems with MATLAB Computing and Simulink Modeling’’, 
Fourth Edition, Orchard Publications, 2008 

 [3] Alan V.Oppenheim, Ronald W.Schafer, John R.Buck, ‘‘ Discrete-Time Signal Processing’’, 
Prentice-Hall, Inc.1999,1989 

 [4] Christopher M.Bishop, ‘‘ Pattern Recognition and Machine Learning’’, Springer, 2006 

 [5] Gilbert Strang, ‘‘Introduction to Applied Mathematics’’, Wellesley-Cambridge Press, 1986 

 [6] David J.C. MacKay, ‘‘ Information Theory, Inference, and Learning Algorithms’’, Cambridge 
University Press, 2005 

 [7] Καλατζής Γιάννης, ‘‘Επεξεργασία ψηφιακού ιατρικού σήματος’’, Σημειώσεις εργαστηριακού 
μαθήματος Επεξεργασίας Σήματος και Εικόνας-Ι, Τμήμα Τεχνολογίας Ιατρικών Οργάνων, ΤΕΙ 
ΑΘΗΝΑΣ, 2009 

 [8] Καλατζής Γιάννης, ‘‘Προγραμματισμός Ηλεκτρονικών Υπολογιστών σε περιβάλλον 
MATLAB’’, Σημειώσεις εργαστηριακών μαθημάτων Προγραμματισμός ΗΥ-Ι &Προγραμματισμός 
ΗΥ-ΙΙ, Τμήμα Τεχνολογίας Ιατρικών Οργάνων, ΤΕΙ ΑΘΗΝΑΣ, 2009 

 [9] Kermit Sigmon, ‘‘MATLAB Primer ’’,Second Edition,Department of Mathematics,University of 
Florida,1992 

[10] B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, ‘‘ MEDICAL PHYSICS AND 
BIOMEDICAL ENGINEERING’’,Department of Medical Physics and Clinical Engineering, 
University of Sheffield, UK,Medical Science Series,1999 

[11] http://www.dspguide.com/ 



12.BIBLIOGRAPHY 
 BOOKS: 

[12] Matlab-source:  http://www.scienceprog.com/category/biomedical-dsp 

[13] Chaudhuri S.,Pawar T.D.,Duttagupta S., ‘‘ Ambulation Analysis in Wearable ECG ’’, Springer,2009 

[14] Gari D.Clifford,Francisco Azuaje,Patrick E.McSharry, ‘‘ Advanced Methods and Tools for ECG 
Data Analysis ’’,Artech House Publishers 

[15]  C. M. Bishop,  Neural Networks for Pattern Recognition.  Oxford University Press, 1995. 

[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques,  2ed.  
Morgan Kaufmann, 2005. 

[17]  Martin Vetterli and Jelena Kovacevic, Wavelets and Subband Coding. Prentice Hall, 1995. 

[18]  Kirkwood BR. Essentials of medical statistics. Oxford, Blackwell Science, 1988. 

[19]  http://www.brown.edu/Departments/Clinical_Neurosciences/louis/artefct.html 

PAPERS: 

[20] Veena Hegde, “Review of Data Analysis Methods for Denoising and Characterising ECG’’, 
November 2009 

[21] Timo Bragge, Mika P.Tarvainen  and Pasi A.Karjalainen, “High-Resolution QRS Detection 
Algorithm for Sparsely Sampled ECG Recordings’’, IEEE Trans Biomed Eng, August 2004 

[22] J.Pan and W.Tompkins, “A real-time QRS detection algorithm’’, IEEE Trans Biomed 
ENG,vol.32,no.3,pp.230-236, March 1985 

[23] Natalia M.Arzeno,Zhi-De Deng and Chi-Sang Poon, “Analysis of First-Derivative Based QRS 
Detection Algorithms’’, IEEE Trans Biomed Eng, vol.55,no.2, February 2008 

[24] Kohler BU,Hennig C.,Orlgmeister R. “The principles of software QRS detection ’’ , IEEETrans 
Eng Med Biol Mag.2002;21(1):42-57  

[25] Mikhled Alfaouri, Khaled Daqrouq,“ECG Signal Denoising by Wavelet Transform Thresholding ’’, 
American Journal of Applied Sciences 5(3):276-281,2008 

 

 


