Imaging Techniques in Biomedical Engineering

Dimitrios I. Fotiadis Professor of Biomedical Engineering University of Ioannina

CONTENTS

Image Enhancement

Image Segmentation

Image classification

Image Enhancement

The operation of processing an image so that the result is more suitable than the original image for a *specific* application.

An digitally enhanced image can offer:

- 1. Better contrast
- 2. sharpness of detail and
- 3. visibility of features

Results can vary with each approach and image, so it can be beneficial to obtain several enhanced images with a variety of approaches.

Enhancement / Digital Subtraction Angiography

Process:

- A dye is injected to increase the density of the blood.
- After a while a number of X-ray images is taken.
- Images that were taken before the injection of the dye are used as the mask or reference image.
- The mask is subtracted from the images that were taken with the dye to produce enhanced images.
- The mathematical procedure involved may be expressed simply as:

$$f = \alpha \cdot f_1 - \beta \cdot f_2$$

✓ Useful to detect sclerosis though it is sensitive to motion

Enhancement / Digital Subtraction Angiography

Images are obtained before (a,b) and after (c) the injection of the dye. The subtraction provides the enhanced image (d).

Image Enhancement - Antti Tuomas Jalava & Jaime Garrido Ceca

Enhancement / Gray-scale Transforms

- Presence of different levels of density or intensity in the image, to improve the visibility of details.
- 1. Gray-scale thresholding:
 - Gray level object > L => new bi-level image.

Problem: Narrow range of gray levels.

Solution: Stretch the range of interest to the full range.

L = 30

New Image

Enhancement / Gray-scale Transforms

- 2. Gray-scale windowing:
 - Linear transformation

Original image

$$g(m,n) = \begin{cases} 0 \to f(m,n) \le f_1 \\ \frac{f(m,n) - f_1}{f_2 - f_1} \to f_1 < f(m,n) < f_2 \\ 1 \to f(m,n) \ge f_2 \end{cases}$$

f2 = 60

f1 = 5

New image

Enhancement / Gray-scale Transforms

- 3. Gamma correction:
 - Non-linear transformations

 $g(m,n) = [f(m,n)]^{\gamma}$

Image Enhancement - Antti Tuomas Jalava & Jaime Garrido Ceca

- **Enhancement / Histogram Equalization**
- Basic idea: find a map such that the histogram of the modified (equalized) image is uniform.
- Histogram

$$h(r_i) = n_i \qquad p(r_i) = \frac{n_i}{n}$$

U, I, ..., L

Histogram equalization

$$s_i = T(r_i) = \sum_{j=0}^{i} p_r(r_j) = \sum_{j=0}^{i} \frac{n_i}{n} \qquad i = 0, 1, \dots, L-1$$

Enhancement / Histogram Equalization

An X-ray CT image (top left) and T-2 weighted proton density image (top right) of human brain crosssections with their respective histograms at the bottom. The MR image shows a brain lesion.

Medical Image Analysis, by Atam P. Dhawan, IEEE Press, 2003.

Enhancement / Histogram Equalization

Histogram equalized images of the brain MR images shown previously and their histograms (bottom).

Medical Image Analysis, by Atam P. Dhawan, IEEE Press, 2003.

Enhancement / Negative image

Image negatives are obtained by mirror changing the RGB values of each image's pixel. A transformation function S = T(r) is shown in the figure:

[0,L-1] the range of gray levels S= L-1-r.

✓ Function reverses the order from black to white so that the intensity of the output image decreases as the intensity of the input increases

Enhancement / Negative image

The negative image of a mammogram:

http://www.becbapatla.ac.in/Fit/Fhtdocs/Subjects/326B/Lecture5.ppt

Enhancement / Homographic Filtering

A schematic block diagram of homomorphic filtering:

Enhancement / Homographic Filtering

> An example:

- i(x,y) and r(x,y) components represent low- and high-frequency components, respectively.
- The circularly symmetric homomorphic filter function is:

$$H(u,v) = (\gamma_H - \gamma_L) \left[1 - e^{c(D^2(u,v)/D^2)} \right] + \gamma_L$$

Shown in the figure:

Medical Image Analysis, by Atam P. Dhawan, IEEE Press, 2003.

Enhancement / Homographic Filtering

> An example:

The enhanced MR image obtained by Homomorphic filtering using the previous circularly symmetric function H(u,v).

Enhanced

Medical Image Analysis, by Atam P. Dhawan, IEEE Press, 2003.

Image Segmentation

- Segmentation in the domain of medical imaging has some characteristics that make it easier and difficult at the same time.
- The imaging is narrowly focused on an anatomic region and its context well-defined, since the imaging modality, conditions and the organ identity is known. The pose variations are limited and there is prior knowledge of the Region of Interest.
- However, the medical images are very challenging due to their poor quality making the anatomical region segmentation from the background very difficult.
- The intensity variations alone are not sufficient to distinguish the foreground from the background, and additional cues are required to isolate ROIs.

Image segmentation

- The segmentation task can be seen as a combination of two main processes:
- 1. Modeling: the generation of a representation over a selected feature space. This can be termed the modeling stage. The model components are often viewed as groups, or clusters in the high-dimensional space.
- 2. Assignment: the assignment of pixels to one of the model components or segments. In order to be directly relevant for a segmentation task, the clusters in the model should represent homogeneous regions of the image.
- ✓ In general, the better the image modeling, the better the segmentation produced.

Image segmentation / Gaussian Mixture Models

- The feature space is generated from image pixels by a mixture of Gaussians. Each Gaussian can be assigned a semantic meaning, such as a tissue region.
- If such Gaussians could be automatically extra-cted, we can segment and track important image regions.
- Using a Maximum Likelihood (ML) formalism, we assume that the pixel intensities are independent samples from a mixture of probability distributions, called a finite mixture model, given by the probability density function

$$f(v_t|\Theta,\alpha) = \sum_{i=1}^n \alpha_i f_i(v_t|\theta_i)$$

where υt is the intensity of pixel t; fi is a component probability density function parameterized by ϑi , where $\Theta = [\vartheta 1 \dots \vartheta n]$ and the variables αi are mixing coefficients that weigh the contribution of each density function.

- Image segmentation / Gaussian Mixture Models
- In the representation phase, a transition is made from voxels to clusters (Gaussians) in feature space.
- The segmentation process forms a linkage back from the feature space to the raw input domain.
- A segmentation map can be generated by assigning each pixel to the most probable Gaussian cluster, i.e., to the component *i* of the model that maximizes the a posteriori probability:

$$\text{Label}\{v_t\} = \arg\max_i \left\{ \alpha_i f(v_t | \mu_i, \Sigma_i) \right\}$$

✓ To produce this visualization, the GMM models, formed from a 3D feature space of intensity and pixel coordinates (*I*, *x*, *y*), were projected onto the image plane (*x*, *y*).

Image segmentation / Gaussian Mixture Models

The GMM modeling of the feature space using an x-ray image is shown in the figure.

- \checkmark The visual effect of varying the number *n* of Gaussians in the GMM is shown.
- ✓ A small *n* provides a very crude description. As we increase the number of Gaussians, finer detail can be seen in the blob representation.
- ✓ Larger *n* provides a more localized description, including finer detail such as the fingers.

Image segmentation / Gaussian Mixture Models

Delineation of gray matter, white matter, Cerebrospinal Fluid (CSF), lesions, diseased parts of white matter, in different anatomic and functional regions of the brain via multi-protocol MRI for studying the multiple sclerosis disease and in elderly subjects to study aging-related depression and dementia

Biological and medical physics, biomedical engineering - Thomas M. Deserno

Image Classification

- Image classification is a procedure by which desired information is extracted from original image data through a designed algorithm.
- Four basic elements are involved in the definition of image classification:
 - original data.
 - classified data.
 - classification algorithm.
 - estimation criterion.
- The scale of image classification problem:
 - original input data: a 256 X 256 lattice grey image
 - classified image: a 256 X 256 lattice binary image
 - The number of possible output is power(2, 256*256). This is a very big number

Image Classification / Features

- A feature is a value describing something about image pixels: intensity, local gradient, distance from landmark, etc.)
- Multiple features put together form a feature vector, which defines a data point's location in n-dimensional feature space. A boundary is selected to discriminate the desired feature space:

Image Classification / Features

Feature Space:

- The theoretical n-dimensional space occupied by n input raster objects (features).
- Each feature represents one dimension, and its values represent positions along one of the orthogonal coordinate axes in feature space.
- The set of feature values belonging to a data point define a vector in feature space.
- Statistical Notation:

Class probability distribution:

 $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y})$

x: feature vector $-\{x_1, x_2, x_3, ..., x_n\}$ / y: class $p(\mathbf{x} \mid \mathbf{y})$: probability of **x** given y $p(\mathbf{x}, \mathbf{y})$: probability of both **x** and y

Image Classification / Binary model

- A binary classification example:
- Two class-conditional distributions:

$$p(\mathbf{x} \mid \mathbf{y} = 0) \qquad p(\mathbf{x} \mid \mathbf{y} = 1)$$

• Priors:

$$p(y = 0) + p(y = 1) = 1$$

Typical model:

$$p(\mathbf{x},\mathbf{y}) = p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y})$$

 $p(\mathbf{x} \mid \mathbf{y}) = \mathbf{Class-conditional distributions} \text{ (densities)}$ $p(\mathbf{y}) = \mathbf{Priors} \text{ of classes} \text{ (probability of class y)}$

Model's output: p(y | x) = Posteriors of classes

- Image Classification / Binary model
- A binary classification example:
- The class distributions are modeled as multivariate Gaussians:

$$x \sim N(\mu_0, \Sigma_0) \text{ for } y = 0$$

$$x \sim N(\mu_1, \Sigma_1) \text{ for } y = 1$$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]$$

Priors are based on training data, or a distribution can be chosen that is expected to fit the data well (e.g. Bernoulli distribution for a coin flip).

- Image Classification / Binary model
- A binary classification example:

Making a class decision:

- **Discriminant** functions (g_n(x)) must be defined.
- Basic choices:
 - Likelihood of data choose the class (Gaussian) that best explains the input data (x):

$$\underbrace{p(\mathbf{x} \mid \mu_1, \Sigma_1)}_{g_1(\mathbf{x})} > \underbrace{p(\mathbf{x} \mid \mu_0, \Sigma_0)}_{g_0(\mathbf{x})} \implies \text{then } y=1 \text{ else } y=0$$

Posterior of class – choose the class with a better posterior probability:

- Image Classification / Binary model
- A binary classification example:
- ✓ When covariances are the same

$$\mathbf{x} \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}), \ y = 0$$
$$\mathbf{x} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}), \ y = 1$$

Methods in Medical Image Analysis - Milos Hauskrecht

- Image Classification / Binary model
- A binary classification example:
- ✓ When covariances are different

$$\mathbf{x} \sim N(\mathbf{\mu}_0, \mathbf{\Sigma}), \ y = 0$$
$$\mathbf{x} \sim N(\mathbf{\mu}_1, \mathbf{\Sigma}), \ y = 1$$

Methods in Medical Image Analysis - Milos Hauskrecht

Calculating Posteriors

- Use Bayes' Rule: $P(A | B) = \frac{P(B | A)P(A)}{P(B)}$
- In this case,

$$p(y=1 \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mu_1, \boldsymbol{\Sigma}_1) p(y=1)}{p(\mathbf{x} \mid \mu_0, \boldsymbol{\Sigma}_0) p(y=0) + p(\mathbf{x} \mid \mu_1, \boldsymbol{\Sigma}_1) p(y=1)}$$

References

- Medical Image Analysis Atam P. Dhawan, IEEE Press, 2003.
- Image Enhancement Antti Tuomas Jalava & Jaime Garrido Ceca.
- Biological and medical physics, biomedical engineering Thomas M. Deserno, ISBN 978-3-642-15815-5, DOI 10.1007/978-3-642-15816-2.
- Methods in Medical Image Analysis, Statistics of Pattern Recognition: Classification and Clustering - Milos Hauskrecht, University of Pittsburgh Computer Science

